
Package: nhm (via r-universe)
August 20, 2024

Type Package

Title Non-Homogeneous Markov and Hidden Markov Multistate Models

Version 0.1.1

Maintainer Andrew Titman <a.titman@lancaster.ac.uk>

Description Fits non-homogeneous Markov multistate models and
misclassification-type hidden Markov models in continuous time
to intermittently observed data. Implements the methods in
Titman (2011) <doi:10.1111/j.1541-0420.2010.01550.x>. Uses
direct numerical solution of the Kolmogorov forward equations
to calculate the transition probabilities.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports stats, deSolve, maxLik, mvtnorm

Suggests msm, parallel, splines, R.rsp

VignetteBuilder R.rsp

NeedsCompilation yes

Author Andrew Titman [aut, cre]

Date/Publication 2023-11-02 21:00:02 UTC

Repository https://andrewtitman.r-universe.dev

RemoteUrl https://github.com/cran/nhm

RemoteRef HEAD

RemoteSha f1f0d673a5db5381e0d3b493db1b70537523ae31

Contents
ematrix.nhm . 2
example_data1 . 3
example_data2 . 3
initialprob.nhm . 4

1

https://doi.org/10.1111/j.1541-0420.2010.01550.x

2 ematrix.nhm

model.nhm . 5
nhm . 7
nhm.control . 9
plot.nhm . 11
predict.nhm . 12
print.nhm_score . 14
qmatrix.nhm . 15

Index 17

ematrix.nhm Compute the misclassification probability matrix from a fitted nhm
model

Description

Outputs the matrix of misclasification probabilities in a misclassification type hidden Markov multi-
state model fitted using nhm.

Usage

ematrix.nhm(object, covvalue=NULL)

Arguments

object Fitted model object produced using nhm.

covvalue Optional vector of covariate vectors (should be given in the order specified in
the covariate option in nhm). If omitted the function will use the mean values
of the covariates.

Details

The emat_nhm function used to fit the model is called to obtain the values of the misclassification
probabilities at the supplied times for the supplied covariate value.

Value

Returns a list containing a matrix of misclassification probabilities and a matrix of corresponding
standard errors computed using the delta method.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

See Also

nhm, plot.nhm, predict.nhm, qmatrix.nhm

example_data1 3

example_data1 Example of data on a progressive 4 state process

Description

The observed states and associated observation times for 1000 patients simulated from a 4 state
process non-homogeneous Markov model

Usage

data("example_data1")

Format

A data frame with 3861 rows and 5 variables:

state Observed state at the time of observation

time Time at which the observation occurred

id Patient identification number

cov1 Binary covariate

cov2 Continuous covariate

example_data2 Example of data on a progressive 4 state process with state misclassi-
fication

Description

The observed states and associated observation times for 1000 patients simulated from a 4 state
process non-homogeneous Markov model with misclassification to adjacent transient states.

Usage

data("example_data1")

Format

A data frame with 3864 rows and 5 variables:

state Observed state at the time of observation

time Time at which the observation occurred

id Patient identification number

cov1 Binary covariate

cov2 Continuous covariate

4 initialprob.nhm

initialprob.nhm Compute the initial probability vector from a fitted nhm model

Description

Outputs the vector of initial state probabilities in a misclassification type hidden Markov multi-state
model fitted using nhm.

Usage

initialprob.nhm(object, covvalue=NULL)

Arguments

object Fitted model object produced using nhm.

covvalue Optional vector of covariate vectors (should be given in the order specified in
the covariate option in nhm). If omitted the function will use the mean values
of the covariates.

Details

The initp_nhm function used to fit the model is called to obtain the values of the initial state vector
at the supplied times for the supplied covariate value.

Value

Returns a list containing a vector of initial state probabilities and a corresponding vector of standard
errors computed using the delta method.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

See Also

nhm, ematrix.nhm

model.nhm 5

model.nhm Model object set up for non-homogeneous Markov models

Description

Sets up a model object in preparation for fitting a non-homogeneous Markov or misclassification
type hidden Markov multi-state model.

Usage

model.nhm(formula, data, subject, covariates=NULL, type, trans,
nonh=NULL, covm=NULL, centre_time=NULL, emat=NULL, ecovm=NULL,
firstobs=NULL, initp=NULL, initp_value=NULL, initcovm=NULL,
splinelist=NULL,degrees=NULL,censor=NULL,
censor.states=NULL,death=FALSE,death.states=NULL,intens=NULL)

Arguments

formula A formula identifying the state and time variables within data, for instance
state ~ time would imply the variables are state and time, respectively.

data data frame containing the observed states, observation times, subject identifiers
and covariates. Should include initial observation/recruitment times.

subject Name of the subject identifier variable within the data data frame.

covariates A character vector giving the variable names of the covariates to be used in the
model

type type of intensity model. 'bespoke': user supplied, 'weibull': Model with
Weibull transition intensity functions with respect to time. 'gompertz': Gom-
pertz/exponential growth intensity models. 'bspline': b-spline function of
time model.

trans Square matrix of viable transitions with dimension equal to the number of states.
Impossible transitions should be 0. Others should be labelled consecutively from
1. Labelling transitions with the same value assumes the parameter is shared.

nonh Square matrix to indicate non-homogeneous transitions with dimension equal to
the number of states. Impossible transitions or homogeneous transitions should
be 0. Otherwise label consecutively from 1. Labelling the same value implies
the same non-homogeneity. Not required if type='bespoke'. If otherwise
omitted a time homogeneous model is fitted.

covm Either a named list of nstate x nstates indicating the covariate effects with respect
to a particular covariate OR an nstate x nstate x ncov array to indicate covariate
effects, where ncov is the length of the supplied covariates vector. 0 implies
no covariate effect. Otherwise label consecutively from 1. Labelling the same
value implies a common covariate effect. Not required if type='bespoke'.

centre_time Value by which to centre time for Gompertz models. By default the model is of
the form h(t) = exp(a+bt), centring by c reparametrizes this to h(t) = exp(a+
b(t− c)). Centring can improve the convergence of optimization routines.

6 model.nhm

emat Square matrix of viable misclassification errors. Must be supplied if the model
has misclassification. Impossible errors should be 0. Others should be labelled
consecutively. Labelling the same implies a common parameter on the logit
scale.

ecovm Either a named list of nstate x nstates indicating the covariate effects with respect
to a particular covariate OR an nstate x nstate x ncov array to indicate indicate
covariate effects on misclassification, where ncov is the length of the supplied
covariates vector. 0 implies no covariate effect. Otherwise label consecutively
from 1. Labelling the same value implies a common covariate effect.

firstobs For misclassification models: Form of the first observation for each subject
in the data. 'exact': Initial state not subject to misclassification (default)
'absent': No initial state. First observation is ignored and state occupied is
based on initial probabilities model. 'misc': Initial state is subject to misclas-
sification.

initp For misclassification models: Numerical vector of length nstate to define the
model for the initial probabilities. The first entry should be zero. Should be
numbered consecutively. If the same number is repeated implies a shared pa-
rameter. If absent then initial probabilities taken from initp_value.

initp_value For misclassification models where firstobs="absent" or "misc": Fixed value
of initial probabilities is missing. Should be a numerical vector of length nstate.
Ignored if initp is present. Default if absent is c(1,0,...).

initcovm For misclassification models; Either a named list of vectors of length nstate,
or an nstate x ncovs matrix to specify the covariate effects on misclassification
probabilities. 0 implies no covariate effect. Otherwise label consecutively from
1. Labelling the same value implies a common covariate effect.

splinelist For bspline models only: list (of length equal to the number of nonhomogeneous
transitions) of knot point locations including the boundary knots.

degrees For bspline models only: optional vector (of length equal to number of nonho-
mogeneous transitions) of degrees of splines. Defaults to 3 if not specified.

censor Vector of censor state indicators in the data. Note that censored observations
can only occur as the last observation for a subject.

censor.states List of vectors of states in which subject occupy if censored by corresponding
censor state indicator. Can be a vector if only one censor state marker is present.

death Setting TRUE assumes exact death times are present in the data set

death.states Vector specifying which states have exact death times. Should only correspond
to absorbing states.

intens Optional supplied intensity function. See below for details.

Details

The function allows the model to be specified and creates the metadata needed to use nhm to fit it.
The function automatically generates a function intens which defines the generator matrix of the
model and its first derivatives as a function of time t, covariates z and the underlying parameters x,
provided the model is of Weibull, Gompertz or B-spline type.

nhm 7

Alternatively, type='bespoke' can be chosen. In which case it is necessary for the user to supply
a function intens. This must have arguments t, z, x and return a list consisting of a component
q which is the nstate x nstate generator matrix, and dq which is the nstate x nstate x nparQ first
derivatives of the generator matrix with respect to the parameters of the model, where nparQ is
the number of parameters in the model for the intensities only (excludes parameters for the emat
or initp). Since unrestricted maximization is used so the parameters must take values on -Inf,
Inf. Note that using a hard-coded version via type='bespoke' can be substantially faster than the
analogous automatically generated function, so for large models or datasets it may be advantageous
to code directly.

For misclassification type models, the function also automatically creates functions emat_nhm and
initp_nhm, to allow the misclassification probability matrix and the initial probability vectors and
their derivatives to be calculated at given parameter and covariate values. In each case, a multino-
mial logistic regression is used for the covariate model. User specification of the misclassification
probability function or initial probability vector is not currently possible.

Value

Returns an object of class nhm_model containing the necessary metadata needed to use nhm to fit
the model.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

See Also

nhm

nhm Fit a non-homogeneous Markov model using maximum likelihood

Description

Fit a continuous-time Markov or hidden Markov multi-state model by maximum likelihood. Obser-
vations of the process can be made at arbitrary times, or the exact times of transition between states
can be known. Covariates can be fitted to the Markov chain transition intensities or to the hidden
Markov observation process.

Usage

nhm(model_object, initial=NULL, gen_inits=FALSE,
control, score_test=FALSE, fixedpar=NULL)

8 nhm

Arguments

model_object Model object created using model.nhm

initial Vector of initial parameter values

gen_inits If TRUE, then initial values for the transition intensities are generated automat-
ically using the method in crudeinits.msm from the msm package. This is
not available for models with misclassified states. If FALSE a BHHH algorithm
implemented using maxLik is used.

control Object of class nhm.control specifying various settings for the solution of the
KFEs and the optimization. See nhm.control for default settings.

score_test If TRUE just the gradient and Fisher information at the supplied values will be
computed to allow score tests to be performed.

fixedpar Numerical vector indicating which parameters are taken as fixed at the value
specified by initial.

Details

For more details about the methodology behind the nhm package, see Titman (2011) and the pack-
age vignette.

Value

By default returns an object of class nhm containing model output data such as the estimated pa-
rameters, maximized likelihood value, information matrix etc. The object can be used with print,
predict, plot and anova.

If score.test=TRUE then returns an object of class nhm_score. See print.nhm_score for more
details.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

References

Titman AC. Flexible Nonhomogeneous Markov Models for Panel Observed Data. Biometrics, 2011.
67, 780-787.

See Also

model.nhm, nhm.control, plot.nhm, predict.nhm, print.nhm_score

Examples

Example dataset
For further examples, see the vignette
trans <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))
nonh <- rbind(c(0,1,0,0),c(0,0,2,0),c(0,0,0,3),rep(0,4))
gomp_model <- model.nhm(state~time, data=example_data1, subject = id,

type="gompertz",trans=trans,nonh=nonh)

nhm.control 9

initial_val <- c(-0.65,-0.45,-0.55,0,0,0)
gomp_fit <- nhm(gomp_model,initial=initial_val,control=nhm.control(obsinfo=FALSE))
gomp_fit
plot(gomp_fit)
plot(gomp_fit,what="intensities")

nhm.control Ancillary arguments for controlling nhm fits

Description

This is used to set various logical or numeric parameters controlling a non-homogeneous Markov
model fit. Usually to be used within a call to nhm.

Usage

nhm.control(tmax=NULL, coarsen=FALSE, coarsen.vars=NULL, coarsen.lv=NULL,
checks=FALSE,rtol=1e-6, atol=1e-6, fishscore=NULL, linesearch=FALSE, damped=FALSE,
damppar=0,obsinfo=TRUE,splits=NULL,ncores=1,print.level=2, maxLikcontrol=NULL)

Arguments

tmax Optional parameter to set the maximum time to which the Kolmogorov Forward
equations should be integrated. Defaults to 1+max(time) if left unspecified.

coarsen If TRUE the covariate values will be subjected to coarsening using K-means clus-
tering, so there are fewer unique values. This is useful for large datasets with
continuous covariates.

coarsen.vars Vector of the index of covariates which require coarsening. Must be supplied if
coarsen=TRUE.

coarsen.lv Number of unique covariate values to which the covariates should be coarsened.

checks If TRUE some basic checks will be performed to ensure the accuracy of the sup-
plied intens function. Mainly useful if a user defined type="bespoke" inten-
sity function is used for which the default is TRUE, otherwise default is FALSE

rtol Relative error tolerance to be passed to lsoda, default is 1e-6

atol Absolute error tolerance to be passed to lsoda, default is 1e-6

fishscore If TRUE then the Fisher scoring algorithm will be used provided the model has
no censoring, exact death times or misclassification. This is generally faster, but
less robust than the BHHH algorithm.

linesearch If TRUE and fishscore=TRUE then a line search will be performed to find the
best step length in the Fisher scoring algorithm.

damped If TRUE the Fisher scoring algorithm will be damped (e.g. Levenberg type algo-
rithm). Useful if some parameters are close to being unidentifiable.

damppar Numerical damping parameter to be applied if damped=TRUE

10 nhm.control

obsinfo If TRUE the observed Fisher information will be computed in addition to the ex-
pected information when the Fisher scoring algorithm is used. For optimization
with maxLik the observed Fisher information will be used as the Hessian rather
than the squared gradient vectors.

splits Optional vector of intermediate split times for solving the ODEs. Only needed
if P(0,t) becomes singular for some t causing the optimization to stop. Should
be a set of consecutive values less than tmax.

ncores Number of cores to use. 1= no parallelization, 2 or more: Uses mclapply when
solving ODEs with different covariates patterns.

print.level For maxLik optimization; level of detail to print. Integer from 0 to 3. Defaults
to 2.

maxLikcontrol For maxLik optimization; optional list of control parameters to be passed to
maxLik.

Details

tmax, rtol and atol refer directly to parameters with the lsoda function in deSolve and relate to
how the Kolmogorov Forward Equations are numerically solved.

coarsen, coarsen.vars and coarsen.lv are useful in situations where it is computationally in-
feasible (or unattractive) to compute the exact solution for all covariate patterns. Implements an
approximate solution in which the covariates are coarsened using K-means clustering (as proposed
in Titman (2011)).

linesearch, damped, damppar are specific to the Fisher scoring algorithm.

Setting obsinfo=TRUE will tend to give more accurate standard error estimates and gives more
opportunity to check for non-convergence of the maximum likelihood procedure.

The option splits modifies the way in which the transition probabilities are computed. By default,
nhm solves a single system of differential equations starting from 0 to obtain P (0, t) and then uses
inversion of the Chapman-Kolmogorov equation P (0, t) = P (0, t0)P (t0, t) to find P (t0, t) for a
given t0 > 0. In some cases P (0, t0) will be singular or effectively singular. If a split is specified
at s then nhm will find P (t0, t) for t0 > t∗ by solving the system of equations P (t∗, t) where t∗ is
the smallest interval start time greater than or equal to s within the data. If nhm fails due to the lack
of split times, the error message will advise on the interval in which the split should be introduced.
Note that the need for splits can also arise if the initial parameters specified are inappropriate. It
may often be better to find more appropriate initial parameter estimates,for instance by fitting the
analogous homogeneous model in msm, rather than adding multiple split times.

ncores allows parallel processing to be used, through the parallel package, to simultaneously solve
the systems of differential equations for each covariate pattern. If ncores > 1 then ncores defines
the mc.cores value in mclapply. Note that the data needs to include multiple covariate patterns for
this to successfully increase computation speed.

Value

A list containing the values of each of the above constants

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

plot.nhm 11

References

Titman AC. Flexible Nonhomogeneous Markov Models for Panel Observed Data. Biometrics, 2011.
67, 780-787.

See Also

nhm

plot.nhm Plot transition probabilities or intensities from a fitted nhm model.

Description

Produces plots of the transition probabilites or intensities from a non-homogeneous Markov or
misclassification type hidden Markov multi-state model fitted using nhm.

Usage

S3 method for class 'nhm'
plot(x, what="probabilities",time0=0, state0=1, times=NULL,
covvalue=NULL, ci=TRUE, sim=FALSE, coverage=0.95, B=1000, rtol=1e-6,
atol=1e-6, main_arg=NULL, xlab="Time", ...)

Arguments

x Fitted model object produced using nhm.

what Character string to indicate what should be plotted. Options are probabilities
(the default which produces transition probabilities) or intensities (to pro-
duce a plot of the intensities)

time0 Starting time from which to compute the transition probabilities or intensities.
Defaults to 0.

state0 Starting state from which to compute the transition probabilities. Defaults to 1.
Not required for transition intensities

times Optional vector of times at which to compute the transition probabilities or in-
tensities. If omitted, the probabilities/intensities will be computed at a sequence
of times of length 100 from time0 to the maximum observed time in the data.

covvalue Optional vector of covariate vectors (should be given in the order specified in
the covariate option in nhm). If omitted the function will use the mean values
of the covariates.

ci If TRUE pointwise confidence intervals will be shown in addition to the point
estimates.

sim If TRUE a simulation Delta method (Mandel, 2013) will be used to calculate the
confidence intervals. Otherwise the standard Delta method will be applied.

coverage Coverage level (should be a value between 0 and 1) for the confidence intervals.
Defaults to 0.95.

12 predict.nhm

B Number of simulations to be performed to compute the simulation Delta method.
rtol Relative tolerance parameter to be used by lsoda when solving the differential

equations for the transition probabilites.
atol Absolute tolerance parameter to be used by lsoda when solving the differential

equations for the transition probabilites.
main_arg Character string specifying beginning of title to be given to each of the plot

panes generated.
xlab Character string specifying x-axis label to be given to each plot.
... Other items to be passed to the function. Currently not used.

Details

Computation is performed by calling predict.nhm, for the transition probabilities, or qmatrix.nhm
for the intensities (see for more details).

Value

Generates a multi-pane plot for each state. If values are required they can be obtained using
predict.nhm.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

References

Mandel M. Simulation-based confidence intervals for functions with complicated derivatives. 2013.
The American Statistician, 67. 76-81.

See Also

nhm, predict.nhm, qmatrix.nhm

predict.nhm Compute state occupation or transition probabilities from a fitted nhm
model

Description

Outputs the transition probabilites from a non-homogeneous Markov or misclassification type hid-
den Markov multi-state model fitted using nhm.

Usage

S3 method for class 'nhm'
predict(object, time0=0, state0=1, times=NULL, covvalue=NULL,
ci=TRUE, sim=FALSE, coverage=0.95, B=1000, rtol=1e-6,
atol=1e-6, ...)

predict.nhm 13

Arguments

object Fitted model object produced using nhm.

time0 Starting time from which to compute the transition probabilities. Defaults to 0.

state0 Starting state from which to compute the transition probabilities. Defaults to 1.

times Optional vector of times at which to compute the transition probabilities. If
omitted, the probabilities will be computed at a sequence of times from time0
to the maximum observed time in the data.

covvalue Optional vector of covariate vectors (should be given in the order specified in
the covariate option in nhm). If omitted the function will use the mean values
of the covariates.

ci If TRUE pointwise confidence intervals will be shown in addition to the point
estimates.

sim If TRUE a simulation Delta method (Mandel, 2013) will be used to calculate the
confidence intervals. Otherwise the standard Delta method will be applied.

coverage Coverage level (should be a value between 0 and 1) for the confidence intervals.
Defaults to 0.95.

B Number of simulations to be performed to compute the simulation Delta method.

rtol Relative tolerance parameter to be used by lsoda when solving the differential
equations

atol Absolute tolerance parameter to be used by lsoda when solving the differential
equations

... Other items to be passed to the function. Currently not used.

Details

The same approach as in the main nhm function of numerically solving the system of differential
equations is used to compute transition probabilities based on the maximum likelihood estimates
found in nhm and assuming a specific vector of covariates.

If the simulation delta method approach is specified then the function will generate B parameter
vectors from the asymptotic distribution of the MLE and solve the system of equations for each of
them, before finding pointwise percentile bootstrap confidence intervals from them.

Value

Returns a list containing the vector of times at which the probabilities are computed, a matrix of
probabilities for each state at each of the times. If confidence intervals are requested then the lower
and upper limits are also provided.

If transition intensity (as opposed to probability) estimates are required then qmatrix.nhm should
be used.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

14 print.nhm_score

References

Mandel M. Simulation-based confidence intervals for functions with complicated derivatives. 2013.
The American Statistician, 67. 76-81.

See Also

nhm, plot.nhm, qmatrix.nhm

print.nhm_score Print output from a score test of a nhm object

Description

Print output from a score test based on parameters supplied to nhm with score_test=TRUE specified.

Usage

S3 method for class 'nhm_score'
print(x, which_comp = NULL, ...)

Arguments

x An object of class nhm_code generated using nhm.

which_comp Optional vector to specify which of the parameters are to be tested. If omitted,
the function will assume all parameters governing non-homogeneity are to be
tested.
Must be supplied if type='bespoke' was specified when creating the object.

... Other parameters to be supplied. Currently ignored.

Details

The function provides usable output from specifying score_test=TRUE when using nhm. It is
most useful to provide a quick(er) test of whether there may be non-homogeneity in a specific
model. Note that the model assumes the initial parameters correspond to the constrained maximum
likelihood estimate (for instance a model with all the parameters relating to time homogeneity).

The method can be used to compute the local score tests of homogeneity proposed by de Stavola
(1988) if type="gompertz" is specified in nhm.

If fisherscore=TRUE in nhm then the expected Fisher information is used. Otherwise, the empir-
ical mean of the squared gradient terms (as used in the BHHH algorithm) is used to estimate the
information.

Value

Prints the results of a score test.

qmatrix.nhm 15

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

References

de Stavola BL. Testing Departures from Time Homogeneity in Multistate Markov Processes. Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics) 1988. 37. 242-250.

See Also

nhm

qmatrix.nhm Compute transition intensities from a fitted nhm model

Description

Outputs the transition intensities from a non-homogeneous Markov or misclassification type hidden
Markov multi-state model fitted using nhm.

Usage

qmatrix.nhm(object, time0=0, times=NULL, covvalue=NULL, ci=TRUE, sim=FALSE,
coverage=0.95, B=1000)

Arguments

object Fitted model object produced using nhm.

time0 Starting time from which to compute the transition intensities. Defaults to 0.

times Optional vector of times at which to compute the transition intensities. If omit-
ted, the intensities will be computed at a sequence of times from time0 to the
maximum observed time in the data.

covvalue Optional vector of covariate vectors (should be given in the order specified in
the covariate option in nhm). If omitted the function will use the mean values
of the covariates.

ci If TRUE pointwise confidence intervals will be shown in addition to the point
estimates.

sim If TRUE a simulation Delta method (Mandel, 2013) will be used to calculate the
confidence intervals. Otherwise the standard Delta method will be applied.

coverage Coverage level (should be a value between 0 and 1) for the confidence intervals.
Defaults to 0.95.

B Number of simulations to be performed to compute the simulation Delta method.

16 qmatrix.nhm

Details

The intens function used to fit the model is called to obtain the values of the transition intensities
at the supplied times for the supplied covariate value.

If the simulation delta method approach is specified then the function will generate B parameter
vectors from the asymptotic distribution of the MLE and compute the intensities for each of them,
before finding pointwise percentile bootstrap confidence intervals from them.

Value

Returns a list containing the vector of times at which the intensities are computed, a matrix of
probabilities for each state at each of the times. If confidence intervals are requested then the lower
and upper limits are also provided.

If transition probability (as opposed to intensity) estimates are required then predict.nhm should
be used.

Author(s)

Andrew Titman <a.titman@lancaster.ac.uk>

References

Mandel M. Simulation-based confidence intervals for functions with complicated derivatives. 2013.
The American Statistician, 67. 76-81.

See Also

nhm, plot.nhm, predict.nhm

Index

∗ datasets
example_data1, 3
example_data2, 3

∗ models
nhm, 7

ematrix.nhm, 2, 4
example_data1, 3
example_data2, 3

initialprob.nhm, 4

maxLik, 10
mclapply, 10
model.nhm, 5, 8
msm, 10

nhm, 2, 4, 7, 7, 10–16
nhm.control, 8, 9

plot.nhm, 2, 8, 11, 14, 16
predict.nhm, 2, 8, 12, 12, 16
print.nhm_score, 8, 14

qmatrix.nhm, 2, 12–14, 15

17

	ematrix.nhm
	example_data1
	example_data2
	initialprob.nhm
	model.nhm
	nhm
	nhm.control
	plot.nhm
	predict.nhm
	print.nhm_score
	qmatrix.nhm
	Index

